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SUMMARY

In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous
Galerkin (DG) formulation for the numerical solution of Euler equations of gas dynamics. With NEFEM,
numerical fluxes along curved boundaries are computed much more accurately due to the exact geometric
representation of the computational domain. The proper implementation of the wall boundary condition
and the exact geometry provide accurate results even with a linear approximation of the solution. A
detailed comparison of NEFEM in front of isoparametric finite elements is presented, demonstrating the
superiority of NEFEM approach for both linear and higher-order computations. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The importance of the geometrical model in finite element (FE) simulations has recently been
pointed out by several authors, see [1–6] to name a few. For instance, in [3] the error induced by
the approximation of curvilinear geometries with isoparametric elements is analyzed in the context
of Poisson and Maxwell problems. Using an exact mapping for the geometry in the numerical
solution of Maxwell’s equations, the error is reduced by an order of magnitude.
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When a DG formulation is adopted, the importance of the geometrical model is crucial in some
applications, such as the numerical solution of Euler equations of gas dynamics. In [1], the authors
demonstrate that using a linear approximation for the geometry, it is not possible to converge
to the steady-state solution, even if the mesh is drastically refined near the curved boundary.
In [2], a detailed study of this problem is presented to conclude that accurate results can only be
obtained taking into account the curvature of the domain. More recently, in [5] a new methodology
is presented for the computation of the fluxes across curved boundaries but, unfortunately, the
proposed method is not conservative.

The importance of the geometrical model in the numerical solution of compressible Euler
equations is not exclusive of DG methods. In [7, 8], the problem is identified in the context
of finite volume (FV) methods, and more recent advances in this area can be found in
[9, 10].

Non-uniform rational B-splines (NURBS, see [11]) are widely used for geometry descrip-
tion in CAD (computer-aided design). This fact has motivated new numerical methodologies
considering an exact representation of the computational domain with NURBS, such as the
isogeometric analysis [4] and the NURBS-enhanced finite element method (NEFEM) [6]. The
isogeometric analysis considers the same NURBS basis functions for both the description
of the entire geometry and the approximation of the solution. This idea was first introduced
in [12] in the context of thin shell analysis. The NEFEM also considers an exact represen-
tation of the domain, but it differs from the isogeometric analysis in two main points: the
geometry is given by the NURBS description of the boundary (i.e. the information usually
provided by CAD), and standard FE polynomial interpolation is considered for the approxima-
tion of the solution. Thus, in the large majority of the domain—for elements not intersecting
the boundary—standard FE interpolation and numerical integration are used, preserving the
computational efficiency of classical FE techniques. Specifically designed piecewise polynomial
interpolation and numerical integration are required only for those FEs along the NURBS
boundary.

In [6], NEFEM is applied to the numerical solution of Poisson and electromagnetic scat-
tering problems. Using NEFEM the optimal rate for h-convergence is obtained for any poly-
nomial degree. Moreover, exponential convergence is observed when a p-refinement strategy
is considered. In the context of electromagnetic scattering applications, the use of NEFEM
reveals an important improvement with respect to classical isoparametric FE. For the same spatial
discretization, an important reduction in the error is observed, in some cases more than one
order of magnitude. In addition, for a desired precision NEFEM is also more efficient because
it allows to compute the solution with an important reduction in the number of degrees of
freedom.

In this paper, NEFEM is presented as a powerful method for numerical solution of Euler
equations using a DG formulation. Sections 2 and 3 recall the system of Euler equations
and its DG discretization. The basic concepts of NEFEM are recalled in Section 4, with
special attention to the interpolation and numerical integration in those elements with one
curved edge defined by NURBS. Section 5 presents a classical test for inviscid flow methods
in order to evaluate the efficiency and accuracy of NEFEM in front of classical FE. Low-
and high-order approximations are tested, and a comparison between isoparametric FE and
NEFEM in terms of the entropy error and other aerodynamic quantities of interest is presented,
demonstrating the superiority of NEFEM approach for the simulation of compressible flow
problems.
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2. EULER EQUATIONS

Euler equations of gas dynamics express the conservation of mass, momentum and energy for a
compressible, inviscid and non-conducting fluid. The strong form of these conservation laws, in
the absence of external volume forces, can be expressed in conservative form as

�U
�t

+ �Fk(U)

�xk
=0 (1)

where Einstein notation is assumed (that is, repeated indices are implicity summed over), U is
the vector of conservation variables and Fk(U) are the flux vectors for each spatial dimension xk ,
that is

U=
⎛⎜⎝

�

�v

�E

⎞⎟⎠ , Fk(U)=
⎛⎜⎝

�vk

�vvk+ek p

(�E+ p)vk

⎞⎟⎠
where � is the density, �v is the momentum, �E is the total energy per unit volume, ek is the
unitary vector in the xk direction and p is the pressure, see [13] for more details.

An equation of state, relating the internal energy to pressure and density, completes this system
of nonlinear hyperbolic equations. For a perfect polytropic gas, the equation of state is

p=(�−1)�(E− 1
2‖v‖2)

where � is the ratio of the specific heat coefficients (specific heat at constant pressure to specific
heat at constant volume), with value �=1.4 for air.

A usual quantity for postprocess of inviscid flow computations is the Mach number, defined as

M= ‖v‖
c

where c=√
�p/� is the speed of sound. For a more detailed presentation of the Euler equations,

see, for instance, [14–16].
Other useful quantities for the evaluation of the accuracy are the entropy error

�ent= p

p∞

(
�∞
�

)�

−1

the pressure loss

ploss= p

p∞

(
1+0.5(�−1)M2

1+0.5(�−1)M2∞

)�/�−1

and the pressure coefficient

Cp = p− p∞
0.5�∞v2∞

where the subscript ∞ indicates free-stream values, see [2, 5] for more details.
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3. DISCONTINUOUS GALERKIN FORMULATION

This section recalls the basic concepts of DG [17] for the solution of Euler equations in an
open bounded domain �⊂Rn . A regular partition in elements �=⋃

e�e is assumed, and an
element-by-element discontinuous approximation space is considered.

The weak problem for the strong form of Euler equations (1) is stated for each element �e. By
multiplying by a test vector function W, integrating over �e and integrating by parts, the following
equation is obtained:∫

�e

W· �Ue

�t
d�−

∫
�e

�W
�xk

·Fk(Ue)d�+
∫

��e

W·Fne(Ue)d�=0 ∀W

where Ue denotes the restriction of U to element �e, ne is the outward unit normal vector on ��e,
and the normal flux is defined as

Fn(U)=Fk(U)nk

with nk the kth component of n. As usual in DG methods, to take into account the discontinuous
nature of the approximation, the normal flux at the boundary of the element is replaced by
a numerical flux, F̂ne(Ue,Uout

e ), which is evaluated in terms of the solution in the current element
�e and the solution at neighboring elements

Uout
e (x)= lim

ε→0+U(x+εne) for x∈��e (2)

The resulting DG weak formulation, to be discretized at each element �e, is∫
�e

W· �Ue

�t
d�−

∫
�e

�W
�xk

·Fk(Ue)d�+
∫

��e

W·F̂ne(Ue,Uout
e )d�=0 ∀W (3)

Some conditions are required for the definition of a numerical flux function: it must be conser-
vative, Lipstchiz and verify some consistency conditions. Some popular flux functions for the
numerical solution of the Euler equations are the exact Riemann solver, the Roe solver, the Lax–
Friederichs solver or the Harten–Lax–van Leer (HLLE) solver, see [18].

Boundary conditions are implemented following the ideas in [19], initially developed in the
context of FV methods. Fictitious elements are considered along the boundary, and the value of
the solution is set to impose the boundary conditions through the numerical flux. As usual in the
solution of Euler equations, a characteristic analysis is performed at the boundary to decide the
quantities to be prescribed, see, for instance, [14–16, 20] for implementation details.

The DG formulation (3) is discretized in each element, leading to a system of ordinary differential
equations

M
dU
dt

+R(U)=0 (4)

where U is the vector of nodal values (or approximation coefficients in a more general case),
M is a block diagonal mass matrix and R(U) is the residual vector. As shown in the examples,
the spatial discretization may be performed using isoparametric FE or NEFEM, see Section 4.
The ODE system (4) is advanced in time using the explicit third-order total variation diminishing
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Runge–Kutta (TVD-RK) scheme presented in [21]. Nevertheless, it is worth noting that semi-
implicit and implicit time integration schemes seem to be an efficient alternative to steady-state
computations, see [22, 23]. The stability condition for the TVD-RK method requires a Courant–
Friedrichs–Lewy (CFL) number �1/(2p+1), where p is the degree of the functional approxima-
tion, see [24].

The evaluation of the residual R(U), which involves the flux at the interior of the elements and
their boundaries, can be carried out, as usual, with two non-equivalent options: a quadrature-free
implementation and a full quadrature version, see [13]. With a quadrature-free implementation,
the flux at the integration points is interpolated in terms of the flux at nodal values, whereas with
a full quadrature version, fluxes are evaluated at integration points, in terms of the solution at
each integration point. The use of a quadrature-free implementation leads to an important save in
computational cost, thanks to the use of elemental matrices, instead of a loop on integration points.
Moreover, for triangles with straight sides (or tetrahedras with planar faces) these elemental matrices
can be computed, using the Jacobian, from matrices previously computed at the reference element,
see [25], with an important reduction in computational time. However, numerical experiments reveal
that a quadrature-free implementation for the Euler equations suffers from instability problems
in the vicinity of stagnation points, see [26] for a detailed explanation. Thus, all computations
presented here are obtained with a full quadrature implementation.

4. NEFEM FUNDAMENTALS

A domain �⊂R2 is considered, whose boundary ��, or a portion of its boundary, is defined
by NURBS curves. A NURBS curve is a curve parametrized by a piecewise rational function,
whose definition changes at the so-called breakpoints, see [11] for a detailed definition. In fact, in
practical applications CAD manipulators use trimmed NURBS, which are defined by a restriction
of the NURBS parametrization to a subspace of the parametric space.

A triangularization of the domain �=⋃
e�e is also assumed, such that every triangle �e has at

most one side, �e, on the NURBS boundary. Figure 1 shows a domain with part of the boundary
described by a NURBS circular curve and a valid triangulation for NEFEM. As usual in mesh
generation codes, it is also assumed that every curved boundary side belongs to a unique NURBS.
That is, a side cannot be defined by different NURBS curves, or, equivalently, every trimmed
NURBS is cut to pieces corresponding to the boundary sides. It is important to note that the

Figure 1. Physical domain with part of the boundary defined by a circular NURBS curve (left) and a
valid triangulation for NEFEM (right).
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Figure 2. Linear transformation, mapping the curved element Ie :=W−1(�e) to the physic element �e.

breakpoints, which characterize the piecewise nature of NURBS, are independent of the mesh
discretization. Thus, the NURBS parametrization can change its definition inside one side, that
is, breakpoints may belong to element sides and do not need to coincide with FE nodes. This is
another major advantage compared with isogeometric analysis [4].

All elements not intersecting the NURBS boundary use the standard FE interpolation and
numerical integration. The basis of NEFEM for an element with one side on the NURBS boundary
is recalled next.

Let �e be an element with two straight interior sides and one side defined by a trimmed NURBS,
�e=C([�e1,�e2]). A linear transformation W from local coordinates to physical coordinates is
considered. The linear transformation W−1 maps the element in physical space �e to a curved
element Ie :=W−1(�e), see Figure 2. Note that Ie plays the role of the reference element in standard
FE, but here it depends on the definition of its NURBS side. Thus, special numerical strategies
are required for every element Ie, see the following sections.

Remark 1
In order to simplify the presentation, it is assumed that the interior vertex of �e is mapped to the
vertex (−1,1) in Ie. The implementation of this condition only requires a proper local numbering
of the vertices of the element.

4.1. FE polynomial basis

In order to work with standard FE polynomial approximations, Lagrange polynomials, i.e. standard
nodal interpolation, can be considered. In fact, they can be defined on the curved triangle, Ie,
in the reference domain or, equivalently, in the actual element in the physical domain, �e. The
use of a linear transformation from the local (reference) coordinates n=(�,�)T in Ie to Carte-
sian coordinates x=(x, y)T in �e ensures that a complete polynomial interpolation of degree
m in n leads to a polynomial interpolation with the same degree in x. Thus, consistency and
accuracy of the approximation are ensured even for elements �e far from being a straight-sided
element.

In order to make the computation of the Lagrange polynomials more systematic, for any order
and for any distribution of nodes, the implementation proposed in [27] is adopted.

Different options can be considered to define nodal distributions in Ie. For low-order elements,
equally spaced nodal distributions can be implemented. Nevertheless, high-order computations
require special distributions of nodes in order to reduce the condition number of the resulting
elemental matrices, see [28, 29] for details. Fekete points [30] are a good example of such
distributions. For curved elements, nodes can be located in the straight-sided triangle given by the
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Figure 3. Fifth-order nodal distributions in Ie: Fekete points in the straight-side triangle (left) and
adapted to the NURBS side (right).

vertexes of Ie, see left distribution in Figure 3, or adapted to the exact geometry using the NURBS
description, see right distribution in Figure 3. Adapted distributions have a positive influence on the
condition number. Moreover, numerical experiments reveal that the non-adapted distribution leads
to a more restrictive CFL stability condition; thus, in the numerical examples adapted distributions
are used.

4.2. Numerical integration

The weak form to be solved requires integration along element sides and in the interiors. All the
elements not having a side along the NURBS boundary are integrated using standard procedures.
Elements with one side, �e, on the NURBS boundary require special attention.

All line integrals to be computed in NEFEM can be expressed as∫
�e

f d�=
∫ �e2

�e1

f (C(�))|JC(�)|d�

where f is a generic function (polynomial), the side of the element is given by a trimmed NURBS
�e=C([�e1,�e2]), and |JC| denotes the norm of the differential of the NURBS parametrization
C (this is not a polynomial). As usual, a 1D numerical quadrature is used for the numerical
computation of the integral, namely∫

�e

f d�≈
nip∑
i=1

f (C(�i ))|JC(�i )|�i (5)

where �i and �i are, respectively, the coordinates and weights of the nip integration points in
[�e1,�e2]. Recall that the parametrization of a trimmed NURBS, C, is a piecewise rational function
whose definition changes at breakpoints. Thus, an independent numerical quadrature must be
considered at every interval between breakpoints to account for the discontinuous nature of the
parametrization. Numerical experiments reveal that Gauss–Legendre quadratures are a competitive
choice in front of other quadrature rules such as trapezoidal and Simpson composite rules or
Romberg’s integration.

NEFEM also requires to compute integrals over an element �e with one side �e on the NURBS
boundary, see Figure 2, that is ∫

�e

f dx dy=|JW|
∫
Ie
f d�d� (6)
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Figure 4. Transformation from [�e1,�e2]×[0,1] to Ie and �e.

where |JW| is the determinant of the Jacobian of the linear transformation W. The computation of
(6) requires a numerical quadrature for every curved element Ie. Reference [31] presents different
alternatives and discusses their advantages and disadvantages. The best alternative corresponds
to the definition of a transformation from the rectangle [�e1,�e2]×[0,1] to the curved element Ie,
see Figure 4. That is, under the non-restrictive assumption that nodes are numbered following
Remark 1,

u : [�e1,�e2]×[0,1] −→ Ie

(�,�) 
−→
{

	1

	2

}
:=

{

1(�)(1−�)−�


2(�)(1−�)+�

}
(7)

where /=(
1,
2)
T :=W−1◦C is the parametrization of the trimmed NURBS corresponding to

the curved side in Ie. Note that such a parametrization is linear in �; this induces some important
practical advantages.

Thus, using the transformations shown in Figure 4, integral (6) is computed as∫
�e

f dx dy=|JW|
∫
Ie
f d�d��|JW|

nip∑
i=1

mip∑
j=1

f (ni j )|Ju(�i ,� j )|�i� j (8)

where nip and mip are the numbers of integration points in the � and � directions, respectively,
ni j :=u(�i ,� j ), {�i ,�i } and {�i ,�i } are the 1D quadrature points and weights for [�e1,�e2] and
[0,1], respectively, and |Ju| is the determinant of the Jacobian of the transformation u.

5. NUMERICAL RESULTS

To evaluate the accuracy and efficiency of the proposed methodology, a classical inviscid test
case is considered: subsonic flow around a circle at free-stream Mach number M∞ =0.3. A DG
formulation is adopted for every numerical computation. As first studied in [1] and later in [2, 5, 32],
DG discretization of the wall boundary condition is very sensitive to the geometrical description
of curved boundaries. More precisely, in [1] the authors show that it is not possible to converge to
the correct physical solution if the computational boundary is approximated with piecewise linear
polynomials.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1051–1069
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(a) (b)

(c) (d)

Figure 5. Details of O-meshes for low-order computations.

The behavior of NEFEM for both linear and high-order approximations is studied and compared
with isoparametric FE in the following sections. All computations are stopped when the density
residual is reduced to 10−10 in the L2(�) norm. The approximate Roe solver is considered for
the evaluation of the numerical flux. In fact, the Roe flux provides more accurate results than the
Lax–Friederichs one for low-order approximations, but no significant differences are observed for
high-order approximations. However, it is very important to remark that the conclusions of the work
derived from the comparison of NEFEM and FEM are exactly the same with a Lax–Friederichs
flux.

5.1. Low-order computations

Four O-meshes with 16×4,32×8,64×16 and 128×32 nodes (i.e. 128, 512, 2048 and 8192
elements, respectively) are considered for low-order computations. A detailed view of these meshes
near the circle is represented in Figure 5, see [5] for mesh generation details.
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Figure 6. Mach number isolines with isoparametric FE and p=1.

Figure 6 showsMach number isolines for isoparametric FE with linear approximation. The results
corroborate the conclusions first published by Bassi and Rebay [1] in the context of DG methods.
Even if the mesh is highly refined near the circle, for instance, using the fine mesh of Figure 5 with
128 curved elements along the circular boundary, a non-physical entropy production is observed
behind the wall. As it is commented in [33], the singularities of the polygonal approximation
of the boundary generate entropy, and the solution develops a non-physical wake that makes the
convergence to the correct solution impossible.

Figure 7 shows Mach number isolines computed with NEFEM using linear approximation. The
results reveal a very good symmetry of the Mach number patterns, even if coarse meshes are
used. Moreover, NEFEM allows convergence to the correct physical solution using the fine mesh
with a piecewise linear approximation of the solution. The exact computation of the outward unit
normal improves the imposition of the solid wall boundary condition. This issue and the exact
representation of the domain drastically reduce the entropy production compared with isopara-
metric FE.
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Figure 7. Mach number isolines with NEFEM and p=1.

Table I. L2 entropy error at the upper mid of the circle
and convergence rate (r ) for p=1.

FEM NEFEM

Mesh �ent r �ent r

16×4 1.85E−02 — 1.18E−02 —
32×8 1.21E−02 0.61 3.07E−03 1.94
64×16 7.38E−03 0.71 6.72E−04 2.19
128×32 4.19E−03 0.82 1.53E−04 2.13

Entropy errors, in L2 norm, measured on the upper mid circle are reported in Table I. For
isoparametric FE, the entropy production observable in Figure 6 deteriorates the h-convergence
rate. In contrast, NEFEM exhibits the optimal convergence rate for linear approximation. Results

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1051–1069
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Figure 8. (a) Pressure loss distribution and (b) pressure coefficient distribution, at the
upper mid of the circle for p=1.

of Table I also show that to achieve an entropy error of 4×10−3 with isoparametric FE a fine
mesh is necessary, whereas the second mesh suffices to obtain the same precision with NEFEM.
Thus, the extra computational cost associated with the numerical integration of NEFEM is clearly
surpassed by the drastic saving in number of degrees of freedom (ten times fewer degrees of
freedom).

Figure 8 shows pressure loss and pressure coefficient distributions on the upper mid of the circle.
At the most critical point, the stagnation point behind the circle, the maximum pressure loss error
with isoparametric FE in the fine mesh is 1.8×10−2, whereas NEFEM maximum error is reduced
more than one order of magnitude, namely 8.4×10−4. Moreover, in the fine mesh, the pressure
coefficient error at the stagnation point is 2.8×10−1 for standard FE and 4×10−3 for NEFEM,
almost two orders of magnitude more precise for the same number of degrees of freedom.

In [1], it is shown that the use of a good approximation of the normal on the solid boundary is
crucial to accurately treat the DG boundary. In particular, the quality of the linear approximation
is drastically improved using a quadratic approximation of the geometry. In fact, as noted by
other authors [1, 5, 32, 33], the use of an accurate normal is crucial. If the exact normal is used
with the linear approximation, the results are drastically improved (similar improvement as with
superparametric). Figure 9 shows Mach number isolines computed with linear approximation and
exact normal at the boundary. Note the reduced entropy production behind the circle. However,
although the global error (entropy error in the whole domain) is reduced using the exact normal
due to the reduction in the entropy, the error measured on the circle surface is almost the same
than using standard linear isoparametric elements. Moreover, it is important to note that NEFEM
results are more accurate. Thus, exact normal evaluation is not enough and an accurate geometrical
approximation (exact approximation for NEFEM) is also important.

It is also important to note that improving the approximation of the normal (or superparametric
representations) does not significantly improve the solution if high-order elements are employed
[1]. Therefore, this analysis will not be included in the following section for high-order elements.

To conclude, it is important to recall that the issue associated with solid wall boundary conditions
is not specific to DG methods. In [8], the same problem had been observed by Barth in the FV
framework. Thus, the benefits of the NURBS-enhanced concept are extensible to FV methods.
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Figure 9. Mach number isolines using the exact normal for flux computations and p=1.

Finally, a comparison between h- and p-refinement strategies for NEFEM is presented in order
to recall the superiority of high-order interpolations, see [34, 35]. For the p-refinement strategy, the
coarser mesh in Figure 5 is considered with an interpolation degree p=1,2,4. Figure 10 shows
the logarithm of the L2 entropy error in the upper mid of the circle as a function of the logarithm
of the number of degrees of freedom. Although the h-refinement process shows the optimal rate
of convergence (straight line with slope p/2), it is clearly surpassed by the exponential decay of
the error for the p-refinement strategy. Thus, the advantage of using high-order interpolations is
clear, especially in the context of a DG formulation. The performance of NEFEM for high-order
computations is studied next.

5.2. High-order computations

Following [33], for high-order computations outer boundaries are placed near the obstacle, and the
symmetry with respect to the x-axis is used in order to reduce the number of degrees of freedom.
Two computational meshes, represented in Figure 11, are considered. The coarser mesh has
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Figure 10. L2 entropy error at the upper mid of the circle for h- and p-refinement using NEFEM.
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Figure 11. Computational meshes for high-order computations.

26 elements and only two curved elements to describe a half of a circle, and the fine mesh is
obtained by uniform refinement. A new measure is proposed in order to quantify the so-called
error in symmetry and compare different orders or methods, namely, the difference between the
Mach number on the right part of the circle (x>0) and on the left part (x<0) in the L2 norm.

Figures 12 and 13 show Mach number isolines in the coarser mesh of Figure 11 using isopara-
metric FE and NEFEM, respectively. For both methods, a degree of p=2 or p=4 is not sufficient
to properly capture the solution, and the entropy production behind the circle is clearly observed.
For higher degrees, namely for p=6 and 8, the isoparametric FE solution shows a slight asym-
metry with respect to the y-axis due to the spurious entropy production. The error in symmetry is
3.7×10−3 for p=6 and 3.1×10−3 for p=8. NEFEM with p=6 exhibits better symmetry than
isoparametric FE with p=8. The error in symmetry with NEFEM is 7.4×10−4 for p=6 and
2.8×10−4 for p=8.

Figures 14 and 15 show Mach number isolines for the fine mesh in Figure 11 using isoparametric
FE and NEFEM, respectively. Quadratic elements, for both methods and this mesh, do not properly
capture the solution. As the degree of the approximation increases, the results improve. However,
the improvement is clearly faster with NEFEM compared with isoparametric FE. Isoparametric
FE induce an error in symmetry of 2.5×10−4 for p=4 and 5×10−5 for p=6, whereas NEFEM
has an error in symmetry of 5.5×10−5 for p=4 and 5.2×10−6 for p=6. Thus, NEFEM has
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(a) (b)

(c) (d)

Figure 12. Mach number isolines for isoparametric FE in the coarse mesh.

(a) (b)

(c) (d)

Figure 13. Mach number isolines for NEFEM in the coarse mesh.

a comparable accuracy with p=4 as isoparametric FE with p=6. Thus, the computational overhead
of NEFEM becomes negligible compared with the drastic reduction in degrees of freedom.

The accuracy in terms of the entropy error for high-order computations is analyzed next.
Figure 16 compares isoparametric FE and NEFEM for the entropy error (in L2 norm on the
upper mid of the circle) as a function of the square root of the number of degrees of freedom. For
isoparametric FE computations, p-convergence is clearly deteriorated for high-order approxima-
tions, whereas NEFEM maintains the exponential p-convergence. The results reveal that the best
accuracy that can be obtained with isoparametric FE on the coarser mesh corresponds to an error of
5×10−4. In order to improve the accuracy of the isoparametric FE computation, an hp-refinement
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(a) (b)

(c) (d)

Figure 14. Mach number isolines for isoparametric FE in the fine mesh.

(a) (b)

(d)(c)

Figure 15. Mach number isolines for NEFEM in the fine mesh.

strategy must be adopted. For instance, an error below 10−4 can be achieved with the second mesh
shown in Figure 11. Note that for NEFEM with the coarse mesh, the error with p=8 is already
4×10−5, more than one order of magnitude more precise than isoparametric FE with the same
number of degrees of freedom. Moreover, if the second mesh is considered, the NEFEM error
with p=8 is 10−6, two orders of magnitude more precise than standard isoparametric FE. It is
also worth noting that with an approximation of degree p=8, similar accuracy is obtained using
isoparametric FE in the fine mesh and NEFEM in the coarse one, that is, NEFEM requires four
times fewer degrees of freedom.

Finally, it is important to recall that in a FE adaptive process, see [36], the computational mesh
must be locally refined to properly capture both the solution and the geometry, whereas in a
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Figure 16. Entropy error on the circle surface for p-refinement.

NEFEM context the adaptive process is controlled only by the complexity of the solution, with
no dependence on the geometrical complexity of the domain, therefore reducing the necessary
number of degrees of freedom to achieve a desired accuracy.

6. CONCLUDING REMARKS

NEFEM combined with a DG formulation is proposed for the numerical solution of compressible
Euler equations. A classical test for inviscid flow solvers is considered to evaluate the accuracy and
efficiency of the proposed methodology in front of isoparametric FE. The proper imposition of the
wall boundary condition in NEFEM allows accurate computations even with a linear approximation
of the solution. With isoparametric FE, it is not possible to converge to the correct solution using
linear approximation, even if the mesh is drastically refined near curved boundaries. Moreover,
under p-refinement, exponential convergence is achieved with NEFEM and not for isoparametric
FE.

Numerical results demonstrate that NEFEM is a powerful method for the solution of Euler
equations of gas dynamics, more efficient than classical isoparametric FE. The extra cost of
NEFEM, due to the numerical integration over elements along the NURBS boundary, is surpassed
by the important saving in the number of degrees of freedom. More precisely, NEFEM provides
similar accuracy than isoparametric FE using between four and ten times fewer degrees of freedom.
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